
1

GenXML 3.0
16. June 2010

Copyright © 2003, 2010 Christoffer Owe. All rights reserved.

2

This document may be freely copied and distributed. It may never be modified in any way without consent of the author.
In other words, you are free to do whatever you want with GenXML as long as you never claim it‟s ownership.

3

Contents

1 WHY GENXML? ...5

1.1 WHAT IS GENXML? ...5
1.2 DIFFERENCES BETWEEN GENXML AND GEDCOM ...5
1.3 GENXML COMPARED TO THE GENTECH GENEALOGICAL DATA MODEL (GDM)6
1.4 DIFFERENCES BETWEEN GENXML 1.0 AND GENXML 2.0 ..6
1.5 DIFFERENCES BETWEEN GENXML 2.0 AND GENXML 3.0 ..7

2 PROPERTIES OF GENXML ...9

2.1 FILE EXTENSION ..9
2.2 VERSIONS..9
2.3 EVIDENCE AND CONCLUSIONS ...9

2.3.1 The Evidence Submodel ..9
2.3.2 The Conclusion Submodel ..9

2.4 THE RESEARCH PROCESS..10
2.5 THE NOTE AND INFO STRUCTURES ...10

3 TECHNICAL DETAILS ...11

3.1 CHARACTER SET ...11
3.2 DEFINITION OF DATATYPES ..11

4 GENXML SPECIFICATIONS ...13

4.1 MAIN STRUCTURES ...13
4.1.1 File ..13
4.1.2 Header ..14
4.1.3 Repository ...15
4.1.4 Source ...15
4.1.5 Excerpt ..17
4.1.6 EventType ...19
4.1.7 Person ...20
4.1.8 Place ...21
4.1.9 Assertion ...25
4.1.10 Objective ...26
4.1.11 Task...26
4.1.12 Total ..27

4.2 GENERAL SUBSTRUCTURES ..28
4.2.1 Stringlang ...28
4.2.2 Normstringlang ...28
4.2.3 Object ...28
4.2.4 Address ...29
4.2.5 Personalname ...31
4.2.6 Coords ..33
4.2.7 Date ..34
4.2.8 Simpledate ..34

4.3 SUBSTRUCTURES OF THE HEADER STRUCTURE ...35
4.3.1 Owner ...35

4.4 SUBSTRUCTURES OF THE PERSON STRUCTURE ..36
4.4.1 Subpersons ..36

4.5 SUBSTRUCTURES OF THE ASSERTION STRUCTURE ...36
4.5.1 Alias ..36

4

4.5.2 Relationship ..37
4.5.3 Attribute ..38
4.5.4 Event ...39
4.5.5 Info ..40
4.5.6 Personref ..41
4.5.7 PersonrefRole ...41

4.6 SUBSTRUCTURES OF THE SOURCE STRUCTURE ...42
4.6.1 Repositoryref ..42

5 GENXML LEVELS ...43

5.1 LEVEL 1 ..43
5.2 LEVEL 2 ..44
5.3 LEVEL 3 ..44
5.4 LEVEL 4 ..45

6 HOW TO … ..47

6.1 … USE SOURCE HIERARCHIES..47
6.1.1 Example 1: Church Records ...47
6.1.2 Example 2: Encyclopedia Britannica ...47
6.1.3 Example 3: A Periodical...47

6.2 … USE MULTIPLE PERSON RECORDS FOR THE SAME INDIVIDUAL ..47
6.3 … BUILD UP YOUR REASONING USING ASSERTIONS ..48
6.4 … STORE ADOPTIONS ...48
6.5 … MAKE THE MOST OF THE RESEARCH MODEL ..48

5

1 Why GenXML?

1.1 What is GenXML?

GenXML is a file format for exchanging data between genealogy programs. It is based on XML and
defined by a XML schema. It is not intended to be used as an internal format of any genealogy
programs, although it may be possible.

The idea of GenXML is that:

 It shall be easy to read by most genealogy programs.

 It shall be easy to write by most genealogy programs.

 It shall be easy to manipulate by third party programs.

 All kinds of information shall fit into one and only one place.

GenXML acknowledges the fact that there are both simple and advanced genealogy programs and
that it may be used in the exchange of data both between two simple programs, between two
advanced programs, from a simple program to an advanced program, and from an advanced
program to a simple program.

The data exchange should be made without data loss, except in the case data is transferred from an
advanced program to a simple program. All data that is impossible to import, should be written to a
log file during the import. Se also chapter 5.

A single scan is always enough to interpret a GenXML file as opposed to Gedcom. GenXML
includes no forward references.

GenXML is mainly inspired by the theoretical Gentech Genealogical Data Model (see
www.gentech.org) and Gedcom Future Directions, which is an unfinished replacement of Gedcom
5.5. GenXML is somewhat simpler than the Gentech model.

1.2 Differences Between GenXML and Gedcom

There already exists a file format for data exchange between genealogy programs. That is Gedcom,
defined by the LDS church. The latest version is 5.5 and is dated 2. January 1996.

There are several problems with Gedcom 5.5:

 It is not clearly defined and is often difficult to interpret.

 There are about as many variants of Gedcom as there are programs that use it.

 It is often unclear where to put data. Almost “everything” is legal.

 Gedcom does not build upon an evidence/conclusion model.

 There is no support for data connected to the research process.

 The main purpose of Gedcom is for sending data to LDS‟ Ancestral File database.

 Gedcom will only have minor updates.

Compared to Gedcom, GenXML is enhanced in several ways:

 It is easier to see what version of GenXML that is used.

 The division into levels make it more easy to understand the capabilities of a program and
also helps “pushing” the program developers into upgrading their program.

 GenXML is based on an evidence/conclusion model.

 There is no limit of possible kinds of events or attributes.

http://www.gentech.org/

6

 GenXML includes advanced name, place and address structures.

 The main purpose of GenXML is for exchanging data between amateur genealogy programs.

1.3 GenXML compared to the Gentech Genealogical Data Model (GDM)

Note that the objective of GenXML is completely different from that of GDM. GDM is a data model
only, and not very detailed. GenXML is primarily a file format. One may look at the GenXML data
model as a simplified version of GDM. You loose some constructions but get a model that is much
easier to implement. Espescially the GROUP entity opens many possibilities, but makes it difficult
to exchange data between applications that may use it in different ways. GenXML is also much
more detailed than GDM. In addition, GenXML is, in a larger extent than GDM designed to support
simpler data models also.

GenXML and GDM share many properties. For example both supports a source hierarchy and
neither have a family entity, like Gedcom. But GenXML has a simpler research model than GDM.

GDM has an EVENT-TYPE, but no event class. The event class construction of GenXML makes it
easier for applications to understand user-defined event types from other applications.

GDM‟s extensive use of PERSONAs may seem quite different from GenXML. It is not. GDM‟s
ASSERTION entity corresponds to GenXML‟s assertion structure. While GDM‟s four subject types
PERSONA, EVENT, GROUP and CHARACTERISTIC compares closely to alias, event, relationship
and attribute, although the GROUP entity is much more flexible than the relationship structure. But
in GenXML alias is regarded as an assertion on its own, and not just a property of assertions of other
types. This is more convenient when entering much information on the same person from for
example a family history.

1.4 Differences Between GenXML 1.0 and GenXML 2.0

GenXML 2.0 is designed to be simpler, easier to implement, and more flexible than GenXML 1.0. Its
updated data model is a purer evidence/conclusion model.

The major differences between GenXML 1.0 and 2.0 are:

 The evidence data model has been enhanced and is now closer to the GDM evidence model
while retaining compatibility with the simpler, but much more widely used, Gedcom model.
As a result of this the document structure has been removed, and the sourceref and excerpt
structures have been merged. A source hierarchy is also supported.

 The data substructure of the person structure has been replaced by an assertion structure
which is now defined as a main structure. Some of the assertion substructures may be linked
to more than one person.

 The association structure is renamed relationship.

 There are no longer an attribute class “residence”. Instead there is now an event class
“residence”. The residence of a person should be considered as an event rather than an
attribute, because 1) residence has no property as other attributes has, and 2) several people
may share the same residence for the same period of time, as opposed to attributes that
relates to only one person.

 The children structure (formerly substructure of person) is removed. The order of children is
now taken care of by the relationship structure in the same way as other assertions.

 Both the group and couple structures have been removed. Instead events may relate to more
than one principal person. A group or couple is from now on no more than two or more
people participating in one or more common events.

7

1.5 Differences Between GenXML 2.0 and GenXML 3.0

GenXML 3.0 does not modify the main structure of GenXML 2.0. Some new features have been
added, and some issues have been fixed.

Changes to the source model:

 GenXML now supports tabular source data. The columns are specified in the source structure
while all source data are specified in excerpt structures, one record/row per excerpt.

 A source can now include lists of surnames and places relevant for that source. The lists are
mainly useful for searching purposes.

 The „text‟ tag has been removed from the source structure, as this tag allowed source data to
be stored both in the source structure and in the excerpt structure. Now all source data can be
stored in the excerpt structure only.

 A new attribute, level, has been added to the excerpt structure. This allows for keeping the
history of imported data.

Changes to assertion data:

 A relationship can now contain only a single parent-child relationship. To record a father-
child and a mother-child relationship, two relationship structures must be created.

 New event type classes: Engagement.

 A sortdate tag has been added to the date structure for sorting and calculation purposes.

 The era tag of the simpledate structure is now valid for the proleptic Gregorian calendar as
well as the Julian calendar. This was not really a problem in GenXML 2.0, but according to
the definition it was not valid for the Gregorian calendar.

 An optional „maid‟ tag has been added to the personalname structure. This may be used for
storing the maiden name in the case you want to keep the maiden name together with the
name while it is no longer a part of that name.

 The place structure is now on top level and hierarchical. This allows for structured places.

 The tag „alias‟ has been added to the place structure for connecting different place names
representing the same physical place.

 Additional value for the tp attribute of the place structure: island.

 Additional value for the tp attribute of the np tag in the name structure: ordi.

Other changes

 The header structure has been enhanced with three additional tags: name, create, and
backup.

 The eventtype structure has been enhanced with three additional tags: principalfmt,
withnessfmt, and print. A new attribute, „active‟, has also been added.

 Extensions are now allowed in all main structures as well as object, address and place.

 The „solution‟ tag is now optional for the objective structure as it is for the task structure.

 New tags have been added to the object structure: objtype, author.

 The type of the title tag of the object structure has been changed from normalizedString to
normstringlang.

9

2 Properties of GenXML

2.1 File extension

GenXML-files should preferably have the file extension „.gml‟.

2.2 Versions

The first structure in the GenXML-file is the file structure which tells the parser which version of
GenXML the file uses. It is not a goal to make later version compatible with the current one. That
would probably be a very difficult task and also limit the quality of the new version. Later versions
should therefore be regarded as separate formats, like Gedcom 4.0 and 5.5 also should be regarded
as separate formats.

Note that the GenXML version also may be seen from the schema reference in the GenXML-file.
This schema reference is not mandatory though.

2.3 Evidence and Conclusions

The GenXML format is based on an evidence/conclusion model.

2.3.1 The Evidence Submodel

Repository Source Excerpt

The main structures of the evidence part is repository, source and excerpt. Evidence is what is found
in existing (preferably primary) sources. The evidence is broken down into excerpts. The
conclusions are based on these excerpts.

2.3.2 The Conclusion Submodel

Assertion Person Name

Object

The conclusions are stored as assertions, and all assertions are linked together through the person
structure which basically represents a single individual. There are several kinds of assertions:

 alias

10

 relationship

 attribute

 event

 info

The different kind of assertions shares many properties, although there are some differences also:

Excerpt Object Date Place

Assertion Only

Event and

Attribute

All except info

2.4 The Research Process

The GenXML format also includes support for the research process. This includes the objective and
task structures. The Gentech Genealogical Data Model also includes a project entity. This is not
supported in GenXML, because the complete GenXML file is regarded as one project. This may not
be satisfactory for expert systems that often have more than one user.

Objective

Task

Source

Person

The objective structure holds one research objective. A research objective includes one or more
research tasks. Each task may be related to one person.

Note that GenXML supports “independent” tasks – that is tasks not related to an objective. That is
why task is a main structure and not a substructure of objective. This is for compatibility with
programs that have only a simple todo structure. Preferably all tasks should be parts of a research
objective.

2.5 The Note and Info Structures

The note structure is mainly used for short comments not meant for printing in reports. Notes meant
to be printed in reports must be placed in the info structure (see definition in 4.5.5).

11

3 Technical Details

3.1 Character Set

All character sets that may be used for XML-files in general, may also be used for GenXML. That
includes Unicode. However, it is not likely that most systems will support all character sets, and
many systems will not support Unicode at all. It is therefore recommended that GenXML-files use
ISO-8859-1 as this closely matches the ANSI character set used by Windows. Applications should at
least support ISO-8859-1, but other character sets, like UTF-8 and UTF-16, should also be supported.
Preferably the user may choose character set when exporting GenXML.

Note that the characters „&‟ and „<‟ are reserved and must never appear in character data. They
must be replaced by „&‟ and „<‟. (See section 2.4 in Extensible Markup Language (XML) 1.0
(Second Edition).)

3.2 Definition of Datatypes

All simple datatypes, except „ident‟, are used as defined in the W3C XML Schema recommendation
(see http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/).

Datatype Definition
any Any tag or structure (i.e. SimpleType or ComplexType in the XML

Schema terminology) from other namespaces. Consequently, tags or
structures defined in the GenXML Schema are not allowed here. The „any‟
type is used to open up for extensions.

anyURI A uniform resource identifier reference (URI).

Base64Binary Represents Base64-encoded arbitrary binary data as defined in section 6.8
in http://www.w3.org/TR/xmlschema-2/#RFC2045

Boolean Two possible values: “true” or “false”.

Datetime A date basically on the form YYYY-MM-DDTtt:mm:ss. Parts of it may be
omitted so that the following forms may be used (see the XML Schema
specifications for complete definition):

YYYY
YYYY-MM
YYYY-MM-DD
YYYY-MM-DDTtt:mm
YYYY-MM-DDTtt:mm:ss

ident This type is used as a unique identifier for each main structure. It consists
of a prefix followed by positive number less than 2.000.000.000. The
prefixes are as follows:

“R” – repository
“S” – source
“X” – excerpt
“E” – eventtype
“P” – person
“L” – place
”A” – assertion
”O” – objective
“T” – task

int A 32-bit signed integer.

Language Identifies the language of the tag in which it is defined. Legal values are
language codes as defined by ISO 639, a combination of such language
codes and country codes (ISO 3166-1) as “en-US”, or IANA-
LANGCODES (see http://www.isi.edu/in-
notes/iana/assignments/languages/).

normalizedString A string without any carriage return (0x0D), line feed (0x0A) or tab (0x09)
characters. Space characters must not be repeated.

http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://www.w3.org/TR/xmlschema-2/#RFC2045
http://www.isi.edu/in-notes/iana/assignments/languages/
http://www.isi.edu/in-notes/iana/assignments/languages/

12

String A string of unlimited length.

Token A string without any carriage return (0x0D), line feed (0x0A) or tab (0x09)
characters. There must be no leading or trailing spaces and space
characters must not be repeated.

13

4 GenXML Specifications
The following operators are used:

 ?: The field/structure must be included zero or one time.

 *: The field/structure may be included any number of times.

 +: The field/structure must be included one or more times.

All XML files starts with a header that may include information on the XML version, the character
set used, the document type definition or schema used, stylesheets for visual formatting and more.
This may for example look like this:

<?xml version=”1.0” encoding=”ISO-8859-1”?>

Definition of the main structure of a GenXML file:

<genxml>
content: (file, header, repository*, source*, excerpt*, eventtype*, person*, place*, assertion*,
objective*, task*, total)

</genxml>

Note that genxml, as the main structure, optionally may include standard XML attributes defining
the schema (see the examples below).

Content of genxml:

Element Type Level
file file structure, see section 4.1.1 1

header header structure, see section 4.1.2 1

repository repository structure, see section 4.1.3 3

source source structure, see section 4.1.4 2

excerpt excerpt structure, see section 4.1.5 2

eventtype eventtype structure, see section 4.1.6 1

person person structure, see section 4.1.7 1

place Place structure, see section 4.1.8 1

assertion assertion structure, see section 4.1.9 1

objective objective structure, see section 4.1.10 4

task task structure, see 4.1.11 3

total total structure, see section 4.1.12 1

Examples:

<genxml>

 …

</genxml>

<genxml xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance“

xsi:nonamespaceSchemaLocation=“genxml21.xsd“>

 …

<genxml>

4.1 Main Structures

4.1.1 File

The file structure is the very first structure of the GenXML-file. This tells the parser which version of
the GenXML format the file uses and at what level it is. Different versions must be regarded as
separate formats. If an application only understands the GenXML 2.0 format, it should not import a
version 2.1 file – at least not without warning the user.

14

The level indicates what kind of data the importing application may expect. The file should not
include data of higher levels than the given level. For example a level 2 compliant application (see
section 1) using repositories, but no other data of level 3 or higher, will export a level 3 file. A level 2
file must not include any repositories.

Definition:

<file>
 content: (version, level)
</file>

Content of file:

Element Type/description Level
version int: The GenXML-version * 100. For example is version 1.0 coded as

100 and 1.1 as 110. For GenXML version 2.1 the value of this field
must always be 210.

1

level int: The highest level of which data are included. If, for example,
objective structures are included in the file, then the file is a level 4
file, even if the exporting application is only level 2 compliant. This
tells the importing application what it might expect to find in the
file.

1

Example:

<file>

 <version>200</version>

 <level>2</level>

</file>

4.1.2 Header

The header structure includes information about the system that created the GenXML file, and
about the owner of the database.

Definition:

<header>
 content: (exportingsystem, version, exported, name?, language?, owner?, copyright?, note?,
create?, change?, backup?)
</header>

Content of header:

Element Type/description Level
exportingsystem normalizedString: Name of the exporting application. 1

version normalizedString: Version of the exporting application. 1

exported datetime: The date of the export. 1

name string: Name of the database 2

language language: The main language of data in this file. 2

owner owner structure (see section 4.3.1): Information on the owner of the
exported database.

N/A

copyright normalizedString: A copyright message of the exported database. N/A

note string: A description of the database. N/A

create datetime: The date and time of the creation of the database. This is
not the same as the creation of the GenXML file.

N/A

change datetime: The date and time of the last change of this database. N/A

backup Datetime: The date and time of the last backup. N/A

Example:

15

<header>

 <exportingsystem>Slekten</exportingsystem>

 <version>0.8</version>

 <exported>2001-11-25</exported>

 <language>en</language>

 <owner>

 …

 </owner>

 <copyright>2001 Christoffer Owe</copyright>

 <note>This is a test file.</note>

</header>

4.1.3 Repository

The repository structure represents a repository of sources, like a library or a public record office.

Definition:

<repository>
 attributes: (id, lang?)
 content: (name, address?, email?, uri?, note?, change?, ext*)
</repository>

Attributes of repository:

Element Type/description Level
id ident: Unique identifier 3

lang language: The language of the repository information. 3

Content of repository:

Element Type/description Level
name normalizedString: The name of the repository. 3

address address structure (see section 4.2.4): The address of the repository. 3

email normalizedString: Email address of the repository. 3

uri anyURI: World wide web homepage of the repository. 3

note stringlang structure (see section 4.2.1): Note. 3

change datetime: The date and time of the last change of this repository
information.

N/A

[ext] any: Any simple or complex type of other namespaces N/A

Example:

<repository id=”R5” lang=”no”>

 <name>Deichmanske bibliotek</name>

 <address>

 <ap>Henrik Ibsensgt. 1</ap><lf/><lf/>

 <ap>N-0179 Oslo</ap><lf/>

 <ap>Norway</ap>

 <phone>23 43 29 00</phone>

 <fax>22 11 33 89</fax>

 </address>

 <email>deichman@deich.folkebibl.no</email>

 <uri>http://www.deich.folkebibl.no</uri>

</repository>

4.1.4 Source

The source structure represents a book, a collection of documents, or similar. It may be printed,
hand-written, in electronic form, or on microfilm/-fiche.

Definition:

<source>

16

 attributes: (id, class?, kind?, media?, lang?)
 content: (author, title, shorttitle, published?, (isbn | issn)?, (repositoryref* | sourceref)?,
 template?, sourname*, place*, object*, note?, change?, ext*)
</source>

Attributes of source:

Element Type/description Level
id ident: Unique identifier 2

class “series”: This is a series consisting of more than one volumes. It
may also be a periodical.

4

“book” (default): This is a single book or a single volume of a
series.

4

“issue”: This is an issue of a periodical, for example a magazine. 4

“article”: This is an article, in for example a magazine. 4

“part”: This is a part of a book, consisting of more than one chapter
or documents.

4

“chapter”: This is a chapter. 4

“document”: This is a document, such as a birth certificate, a
census entry, a church register entry, or an inscription like a
tombstone.

4

“section”: This is a part of a chapter. 4

“excerpt”: This is a single excerpt, consisting of one or a few
sentences.

4

kind “original”: This is an original source. 4

“reprint”: This is a reprint of the original source. 4

“copy”: This source is a copy or transcript of the original source. 4

“unknown” (default): It is not known if this source is an original or
a copy.

2

media “audio”: This source exist as sound only. 4

“digital”: This source exists as a digital file. 4

“fiche”: This source is published on microfiche. 4

“handwritten”: This source is handwritten. 4

“inscription”: This source is an inscription, for example on a
tombstone.

4

“microfilm”: This source is published on microfilm. 4

“photo”: This source exists as a photography. 4

“printed”: This is a printed source. 4

“video”: This source exist as video. 4

“other”: This source exists on some other kind of media than the
ones described above.

4

“unknown” (default): The media of this source is unknown. 2

lang language: The language of the source. 3

Content of source:

Element Type/description Level
author normalizedString: The name of the source‟s author or editor. 2

title normalizedString: The complete title of the source. 2

shorttitle normalizedString: A short version of the title. 2

published normalizedString: Publication facts such as where the source was
published, the name of the publisher, and the year it was
published.

2

isbn normalizedString: International Standard Book Number. A 10-digit
number which identifies any published book or edition.

4

issn normalizedString: International Standard Serial Number. A 8-digit
number which identifies any periodicals.

4

repositoryref repositoryref substructure (see section 4.6.1): Includes a pointer to
a repository structure.

3

sourceref ident: Pointer to a „higher‟ source record representing a source of 4

17

which this source is a part. For example this source may represent
an specific volume, while the „higher‟ source represents the entire
series.

template string: Specifies a template used for the excerpt text for all excerpts
for this source. The template should be on the form
“col1;col2;col3”. The excerpt text should have the same form. If the
source contains a table of data, this field represents the headings of
the table columns while the each excerpt represent one table row.

4

surname string: A surname covered or mentioned by this source. 4

place ref: Points to a place structure (see section 4.1.8) representing a
place covered or mentioned by this source.

4

object object structure (see section 4.2.3): An object related to the
document. (For example a picture of the document.)

3

note stringlang structure (see section 4.2.1): Note. 2

change datetime: The date and time of the last change of this source
information.

N/A

[ext] any: Any simple or complex type of other namespaces N/A

Some sources contain tabular data. For example, in church records you may find the following table
for baptisms:

Date Name Parents Address

12/3 1887 Ole Sven Olsen and Marie
Hansdatter

Sandnes

14/3 1887 Ingrid Peder Larsen and
Ingeborg
Rasmusdatter

Sandnes

To store this table in GenXML 2.1, the source template feature must be used. In the source structure,
include the following:

<template>Date;Name;Parents;Address</template>

Two excerpts are needed – one per row in the table. The excerpt for the first row should be coded as
follows:

<excerpt id=”X3”>

<text>12/3 1887;Ole;Sven Olsen and Marie Hansdatter;Sandnes</text>

 <sourceref>S1</sourceref>

</excerpt>

If any part of the text include semicolon, that part of the text can be enclosed by quotes, following
the standard rules for csv-data.

If one single source includes several different tables – which is often the case – the source hierarchy
feature should be used as well as the template feature. Each table should be represented by a source
structure. In addition a source record representing the entire source should be created. The other
sources should be linked to this „overall‟ source by the sourceref-tag.

Note that in version 2.0, source text could be included in a „text‟ field. In version 2.1, all source text
should be contained in excerpts. If converting from GenXML 2.0 to 2.1, an additional excerpt should
be generated for source text contained directly in the source structure.

4.1.5 Excerpt

The excerpt structure represents a single excerpt (like “John was the third son of Robert” or “John
was 64 years old in 1759”) extracted from a source.

18

Definition:

<excerpt>
 attributes: (id, lang?)
 content: (text?, quality?, page?, sourceref, level?, note?, change?, ext*)
</excerpt>

Attributes of excerpt:

Element Type/description Level
id ident: Unique identifier 2

lang language: The language of the excerpt. 3

Content of excerpt:

Element Type/description Level
text string: Text extracted from the referred document. This field is

expected to hold csv-data (one single row) if the template tag has
been included in the corresponding source structure. For more
information see section 4.1.4.

3/4

quality an integer between 0 and 100: This is the quality of the document
or data from the referred source, in percents of reliability. If this is
not present, the quality must be regarded as unknown..

3

page normalizedString: A short description of where in the source the
referred data exist.

2

sourceref ident: Pointer to a source structure. 2

level int: Indicates if the source has been verified directly or indirectly. If
the excerpt has been entered directly, the value should always be 0.
If the excerpt has been imported, it‟s level should be increased by
1. See below for more information. Default value is 0.

4

note stringlang structure (see section 4.2.1): Note. 3

change datetime: The date and time of the last change of this excerpt
information.

N/A

[ext] any: Any simple or complex type of other namespaces N/A

4.1.5.1 Quality

The following table shows the recommended conversion between “quality” and Gedcom QUAY:

Gedcom QUAY-value GenXML “quality”
0 – unreliable evidence 0-49%

1 – questionable reliability of
evidence

50-79%

2 – secondary evidence 80-94%

3 – primary evidence 95-100%

4.1.5.2 Level

When importing a GenXML or Gedcom file into a database, several sources and excerpts may be
imported with it. These sources have not been verified directly. Instead, for the user, the imported
file itself is the source, with several unverified excerpts. The importing application should therefore
record the file itself as a source and add excerpts referencing this source, for all assertions imported
from that file. These excerpts will be of level 0. All excerpts imported from the file should get their
level increased by one (meaning the value should be one if no level is specified in the file).

19

The process may be repeated if the database, including the imported data, is exported and imported
into another database. The original excerpts will then be of level 2, and the importing history is
retained.

An application should reset the level if the excerpt is changed, assuming the user has verified it.

4.1.6 EventType

The eventtype represents a certain event type (such as marriage, birth, retirement), user defined or
application defined.

Note that the class is always a noun while the description would typically be a verb (birth – born,
baptism – baptized).

The description field makes event types language dependant. It may seem a drawback that the
event types can‟t easily be translated from a language to another. But event types may be quite
different in different cultures, and an automatic translation may not retain the correct meaning. It is
therefore important to understand that the event types is a part of the database as well as other
genealogical data, and the database can only be translated by a qualified person.

Definition:

<eventtype>
 attributes: (id, class, active?, lang?)
 content : (description, gedcomtag ?, roles ?, principalfmt ?, withnessfmt ?, print ?, note ?,
ext*)
</eventtype>

Attributes of eventtype:

Element Type/description Level
id ident: Unique eventtype identifier. 1

class “adoption”: Adoption or similar events (like moving in with foster
parents).

3

“annulment”: The annulment of a marriage. 3

“baptism”: Any kind of baptism or similar events. 2

“birth”: The birth of the person. 1

“blessing”: Any kind of blessing or similar events. 3

“burial”: Any kind of burial (for example funeral or interment). 2

“census”: Any kind of events dealing with the counting of people. 3

“confirmation”: Any kind of confirmation or similar events
regardless of religion.

3

“coronation”: Any kind of coronation or similar events. 3

“cremation”: The cremation of a person. 3

“death”: The death of a person. 1

“discharge”: The event of leaving the army. 3

“divorce”: The event of dissolving a marriage or similar union. 2

“election”: The event of being elected or similar. 3

“emigration”: The event of leaving the place where one live. 3

“engagement”: The event of uniting two persons with the intention
of later marriage, or a similar kind of union that should not be
treated as marriage.

3

“enlistment”: Any kind of enlistment to the army, or similar
events.

3

“graduation”: The event of graduating from a school or university,
or similar.

3

20

“health”: Any event related to health, for example vaccination or
operations.

3

“immigration”: The event of entering a new locality with the
intention of residing there.

3

“internment”: The event of being interned, or similar. 3

“marriage”: The event of uniting two persons in marriage or
similar union. See also “engagement”.

1

“naturalization”: The event of obtaining citizenship in a city or a
country, or similar events.

3

“ordination”: The event of receiving authority to act in religious
matters, or similar events.

3

“residence”: The address or place where one or more persons
live(d).

3

“retirement”: Any kind of retirement. 3

“other”: Any other kind of events. 3

active “yes” (default) or “no”: Specifies if new events od this type may be
created.

4

lang language: The language of the eventtype information. 4

Content of eventtype:

Element Type/description Level
description normstringlang structure (see section 4.2.2): Short description of

the event type.
3

gedcomtag token (Default is “EVEN”): The GEDCOM 5.5-tag of this event
type.

3

roles int (Default is ”1”): The maximum number of principal roles in this
event type. If this value is set to “0”, it means that events of this
type may have an unlimited number of principal roles. Note that
GenXML can‟t guarantee that no events of this type have more
principal participants than specified here. But an application which
doesn‟t follow this rule, can‟t expect its data to be imported
correctly by other applications.

1/3

principalfmt format: Format description for formatting sentences of events of
this type for principal roles.

5

withnessfmt format: Format description for formatting sentences of events of
this type for withness roles.

5

print Boolean: Flag defining if events of this type should be included in
reports or not.

5

note stringlang structure (see section 4.2.1): Note. 4

[ext] any: Any simple or complex type of other namespaces N/A

Example:

<eventtype id="E5" class="baptism" lang="en-us">

 <description lang="en-us">baptized</description>

 <gedcomtag>CHR</gedcomtag>

 <roles>1</roles>

 <note>A common christian baptism</note>

</eventtype>

4.1.7 Person

The person structure represents a single individual. If, however, there are two persons, each with
their own data, that may be the same individual, there may be created a third person that, through
the subpersons substructure, combines the two persons into one. If it is certain that the two person
records really represents the same individual, they should be merged into one instead of using the
subpersons structure. Note that no data except a name may be connected to a person record using the
subpersons structure.

21

Definition:
<person>
 attributes: (id, sex, lang?)
 content: (personalname, (subpersons | (excerptref*, object*)), note?, change?, ext*)
</person>

Attributes of person:

Element Type/description Level
id ident: Unique identifier 1

sex “male”: This person is a man. 1

“female”: This person is a woman. 1

“unknown”: The sex of this person is unknown. 3

lang lang: The language of the person information. 3

Content of person:

Element Type/description Level
personalname personalname structure (see section 4.2.5): Name of the person.

This may be a normalized version of the persons name. The name
as found in sources is stored in the alias record.

1

subpersons subpersons structure (see section 4.4.1): A structure used for
combining two persons into one. See section 6.2 for more
information.

4

excerptref ident: Pointer to an excerpt structure on which the information on
this person is based.

2

object object structure (see section 4.2.3): Files/objects related to this
person.

3

note stringlang structure (see section 4.2.1): Researcher notes for this
person. This element should not contain genealogical data.
Comments meant to be printed on reports (for example the life of
the person) should be stored in info structures (see 4.5.5).

3

change datetime: The date and time of the last change of this person
information.

N/A

[ext] any: Any simple or complex type of other namespaces N/A

Example:

<person id="P57" sex="male">

 <personalname>

 <np tp="unkw">Fred</np>

 <np tp="surn">Lunde</np>

 </personalname>

 <change>2003-05-25</change>

</person>

4.1.8 Place

The place structure represents a place where some event happened. It is not intended for postal
addresses.

Places are stored with name parts in separate records. What in Gedcom would be stored as a single
place, like “Balquholly Castle, Aberdeenshire, Scotland”, would in GenXML 2.1 be stored as three
separate records, for “Scotland”, “Aberdeenshire” and “Balquholly Castle”. Note that the most
significant part (here “Scotland”) should always be stored first.

The place structure may and should be hierarchic, but doesn‟t have to. With flat data, each place
may actually be stored as a separate hierarchy (as in the example above).

22

Definition:
<place id?>
 attribute: (id?, tp?, lang?)
 content: (prefix?, name, place*, alias?, date?, cords?, ext*)
</place>

Attribute of place:

Element Type/description Level
id Ident: Unique identifier. 1

tp “continent”: The place name refers to a continent or part of the
world.

4

“country”: The place name refers to a country. 4

“state”: The place name refers to a part of a country which are
partly independent, like a state in USA or a greater principality.

4

“county”: The place name refers to a county or province, a part of a
country or state, or a lesser principality, with its own authorities.

4

“town”: The place name refers to a town or city. 4

“muni”: The place name refers to a municipality. 4

“citypart”: The place name refers to a part of a town or city. 4

“building”: The place name refers to a building or a group of
buildings, like a church or monastery.

4

“diocese”: The place name refers to an ecclesiastical district under
the jurisdiction of a bishop.

4

“deanery”: The place name refers to a district under the
jurisdiction of a dean, part of a diocese.

4

“parish”: The place name refers to an ecclesiastical district with its
own church.

4

“farm”: The place name refers to a farm or estate. 4

“ocean”: The place name refers to an ocean or sea of salt water. 4

“lake”: The place name refers to a lake. 4

“mountain”: The place name refers to a mountain. 4

“island”: The place name refers to an island. 4

“cemetery”: The place name refers to a cemetery. 4

“other”: The place name refers to an other kind of geographical
area or jurisdiction than the one above.

4

“unknown” (default): The place name is of an unknown type or the
exporting program does not support the above place name part
descriptions.

1

lang lang: The language in which the place name is written. 4

Content of place:

Element Type/description Level
prefix normalizedString: Prefix used when printing place names, like

“in”, “at” or “near”.
4

name normalizedString: Place name. It can contain only a single place
name (in GenXML 2.0 called place name part). Combined names,
like “Skanderborg, Jylland, Denmark” must be stored as a
hierarchy of several place structures. See example below.

1

place ref: Places, being a part of this place

alias ref: Pointer to another instance of the same physical place, for
example a different name valid in a different historic period or the
same name elsewhere in the hierarchy (for example diocese and
parish instead of county and town).

4

date date structure (see section 4.2.7): The period when this place name
was valid.

4

cords coords structure (see 4.2.6): The geographical coordinates of the
place.

4

[ext] any: Any simple or complex type of other namespaces N/A

23

In contradiction to all other top level structures, the id attribute is optional for places. It the place is
to be referenced, it must have an id. As places are hierarchical, all leaves in the hierarchy will
typically have an id, but not necessarily the nodes.

4.1.8.1 Examples

Example of level 1 place:
<place>

 <name>Scotland</name>

 <place>

 <name>Aberdeenshire</name>

 <place id=”L14”>

 <name>Balquholly Castle</name>

 </place>

 </place>

</place>

Example of level 4 place:

<place tp=”state”>

 <prefix>in</prefix>

 <name>Scotland</name>

 <place tp=”county”>

 <prefix>in</prefix>

 <name>Aberdeenshire</name>

 <place id=”L14” tp=”building”>

 <prefix>near</prefix>

 <name>Balquholly Castle</name>

 </place>

 </place>

</place>

Example of place with alias and date:

<place tp=”state”>

 <prefix>in</prefix>

 <name>Scotland</name>

 <place tp=”county”>

 <prefix>in</prefix>

 <name>Aberdeenshire</name>

 <place id=”L14” tp=”building”>

 <prefix>in</prefix>

 <name>Balquholly Castle</name>

 <date><to>1727</to></date>

 </place>

 <place id=”L15” tp=”building”>

 <prefix>in</prefix>

 <name>Hatton Castle</name>

 <alias>L14</alias>

 </place>

 </place>

 <place tp=”county”>

 <prefix>in</prefix>

 <name>Banffshire</name>

 <place id=”L16” tp=”building”>

 <prefix>in</prefix>

 <name>Hatton Castle</name>

 <alias>L14</alias>

 <date><from>1890</from><cto>1975</to></date>

 </place>

 </place>

</place>

24

4.1.8.2 More on Place Hierarchies

Some applications support place hierarchies. Others don‟t. GenXML may be used for both types of
application as described in the following table:

 Importing appl.

 Hierarchies supported Hierarchies not supported

E
x

p
o

rt
in

g
 a

p
p

l.

H
ie

ra
rc

h
ie

s
su

p
p

o
rt

ed
1

The places are both stored and
imported as a true hierarchy.

The places are stored as a hierarchy, but
each place name is imported and stored in a
flat structure. As the importing application
can‟t easily know if a place name is a node
or a leaf (or both) in the hierarchy, all names
should be regarded as place names
(including all parent names to create place
names of the Gedcom type). The alternative
would be to read the complete hierarchy
into memory to find the leaves and only
store those.

H
ie

ra
rc

h
ie

s
n

o
t

su
p

p
o

rt
ed

The places are stored in a flat structure,
meaning separate hierarchies for each
Gedcom type place name. The data
may be automatically consolidated by
the importing application based on
place name and type, but it should be
done very carefully not to mix different
places with the same name.

The places are stored in a flat structure,
meaning separate hierarchies for each
Gedcom type place name. Each “hierarchy”
must be reassembled into a single Gedcom
type place name by the importing
application. This safest way to do this
would be to read all the hierarchies into
memory to find all the lowest level nodes
(leaves) and then store only those, or to
store only place names actually referred to
by the assertions, based on the capabilities
of the application.

Place names doesn‟t have to be fully qualified. The following hierarchy is fully valid:

World
United Kingdom

Scotland
Aberdeenshire

Balquholly Castle
Caithness

Freswick
Balqhuolly Castle

Balquholly Castle

In the example above there are three place names “Balquholly Castle”. One in Aberdeenshire and
one in Caithness. The third is not specified. It may be the one in Aberdeenshire, the one in Caithness
or a third one. The user doesn‟t always have enough information to decide, so partly and inaccurate
information must be accepted.

1 Please note that even if an application supports place hierarchies, it may choose (based on selections done by
the user) to export places in a flat structure to improve the import into an application not supporting
hierarchies.

25

A place may be a part of another place. It can also be in more than one place. A city may for
example be in both a county and in a diocese. These assignments may also vary over time. This is
not directly supported by GenXML. A city in a county and the same city in a diocese will be treated
as two separate places in the place hierarchy. It is thus the place name reference in an assertion
which decides which of these two instances of the same city to be used. The cities may still be
identified as the same city by using coordinates.

4.1.9 Assertion

The assertion represents a piece of conclusional data for a person, such as the birth date, hair color or
relationships.

Definition:

<assertion>
 attributes: (id, datatype?, lang?)
 content: ((alias | relationship | attribute | event | info),

(excerptref* | (assertionref, assertionref)), object*, note?, change?, ext*)
</assertion>

Attributes of assertion:

Element Type/description Level
id ident: Unique assertion identifier. 1

datatype “public” (default): Indicates “public” information that will be
printed in reports and exported.

4

“family”: The data is public to family members only. 4

“immfamily”: The data is public to the immediate family only. 4

“private”: Indicates private or confidential information that will
not normally be printed in reports or exported.

4

“info”: Indicates information that will normally not be printed in
reports, not because it is private, but because it is mostly of interest
to the researcher only.

4

lang lang: The language of the assertion information. 3

Content of assertion:

Element Type/description Level
alias alias structure (see section 4.5.1): The assertion is a name alias. 3

relationship relationship structure (see section 4.5.2): The assertion represents a
parent-child relationship.

1

attribute attribute structure (see section 4.5.3): The assertion represents an
attribute of the associated person(s).

1

event event structure (see section 4.5.4): The assertion represents an event
(like birth, death, marriage or divorce).

1

info stringlang structure (see section 4.2.1): This is a string that may
hold general information about a person that does not fit into any
of the other assertion structures.

1

excerptref ident: Pointer to an excerpt structure on which this assertion is
based.

2

assertionref ident: Pointer to an assertion on which this assertion is based. An
assertion may be based on two other assertions instead of an
excerpt.

4

object object structure (see 4.2.3): Files/objects related to this assertion. 3

note stringlang structure (see section 4.2.1): Researcher notes for this
assertions. This element should not contain genealogical data.

3

change datetime: The date and time of the last change of this couple
information.

N/A

26

[ext] any: Any simple or complex type of other namespaces N/A

4.1.10 Objective

The objective structure represents a research objective. A research objective consists of one or more
research tasks (see section 4.1.11). The research objective is split into one task for each affected
person.

Note that the research objective may be seen as having a status, like the research task. The
objective‟s status should then equal the lowest status of the objective‟s tasks. A application may
easily calculate this. The research objective is not completed until all of its tasks are completed.

The task structure should be regarded as a substructure of the objective structure. But since the task
structure is a level 3 structure and objective is a level 4 structure, the task structure is implemented
as a main structure.

Definition:

<objective>
 attributes: (id, lang?)
 content: (title, problem, solution?, priority?, created?, change?, ext*)
</objective>

Attributes of objective:

Element Type/description Level
id ident: Unique identifier 4

lang lang: The language of the research objective information. 4

Content of objective:

Element Type/description Level
title string: Short description of the research objective. 4

problem string: Complete description of the research objective. Note that
details regarding a single group, couple or person should be stored
in the corresponding task structure.

4

solution string: Complete description of the solution of the problem. Note
that details regarding a single group, couple or person should be
stored in a corresponding task structure.

4

priority “low”: The research objective has low priority. 4

“medium”: The research objective has medium priority. 4

“high”: The research objective has high priority. 4

created datetime: The date of the creation of the research objective. 4

change datetime: The date and time of the last change of this research
objective.

N/A

[ext] any: Any simple or complex type of other namespaces N/A

4.1.11 Task

The task structure represents a research task. A research task may be related to a specific person,
and to a specific source. It may (and should) also be part of a research objective.

Note that each combination of person and source should be separate tasks.

Definition:

<task>

27

 attribute: (id, lang?)
 content: (title, problem, solution?, objectiveref?, personref?, sourceref?, status, statusdate?,
 change?, ext*)
</task>

Attributes of task:

Element Type/description Level
id ident: Unique identifier 3

lang lang: The language of the research task information. 3

Content of task:

Element Type/description Level
title string: Short description of the problem. 3

problem string: Complete description of the problem and what need to be
done.

3

solution string: Description of the solution. This should be used for
archiving purposes.

3

objectiveref ref: Pointer to a objective structure. The task should always be a
part of an objective if the objective structure is supported by the
exporting program.

4

personref ref: Pointer to a person structure. 3

sourceref ref: Pointer to the source that is to be searched. 3

status “new”: This task is registered, but work is not started. 3

“analysis”: The work on this task has started. 3

“finished”: The work on this task is finished. 3

“updated”: The database has been updated with the results from
the work on this task, and the case is closed.

3

“rejected”: The task is rejected and will not be executed. 3

statusdate datetime: The date of the last status change. This value is system
generated and not typed in by the user.

3

change datetime: The date and time of the last change of this research task. N/A

[ext] any: Any simple or complex type of other namespaces N/A

4.1.12 Total

The TOTAL structure is always the last one in the file and must always be included. The purpose is
to tell the importing program how many structures that should have been imported.

Definition:

<total>
content: (repositories, sources, excerpts, eventtypes, persons, places, assertions,

objectives, tasks)
</total>

Content of total:

Element Type/description Level
repositories int: The total number of repository structures in the file. 1

sources int: The total number of source structures in the file. 1

excerpts int: The total number of excerpt structures in the file. 1

eventtypes int: The total number of eventtype structures in the file. 1

persons int: The total number of person structures in the file. 1

places int: The total number of place structures in the file. 1

assertions int: The total number of assertion structures in the file. 1

objectives int: The total number of objective structures in the file. 1

tasks int: The total number of task structures in the file. 1

28

Example:

<total>

 <repositories>1</repositories>

 <sources>4</sources>

 <excerpts>0</excerpts>

 <eventtypes>12</eventtypes>

 <persons>124</persons>

 <places>32</places>

 <assertions>49</assertions>

 <objectives>0</objectives>

 <tasks>0</tasks>

</total>

4.2 General Substructures

4.2.1 Stringlang

General string with language attribute.

Definition:

<[stringlang]>
 attribute: (lang)
 data: string
</[stringlang]>

Note that the name of the structure may vary.

Attribute of note:

Element Type/description Level
lang lang: The language of the note. 4

4.2.2 Normstringlang

General normalized string with language attribute.

Definition:

<[normstringlang]>
 attribute: (lang)
 data: normalizedString
</[normstringlang]>

Note that the name of the structure may vary.

Attribute of note:

Element Type/description Level
lang lang: The language of the note. 4

4.2.3 Object

Objects represents a file. An object may be included as a reference to an external file (using
externalfile) or completely included in the GenXML file (using originalfile and data). If object is used as
a reference to an external file, that external file should be present in the same folder as the GenXML-
file.

29

Definition:

<object>
 attribute: (lang?)
 content: (objtype?, (externalfile | (originalfile, bin)), title, author?, owner?, note?, ext*)
</object>

Attribute of object:

Element Type/description Level
lang lang: The language of the object information (and content if

applicable).
4

Content of object:

Element Type/description Level
objtype “unknown”: The object type is unknown. This is the default value. 3

“portrait”: The object contains a single person, like a picture of a
person, a movie of a person, or a recording of a person.

“group”: The object contains a group of people, like a picture of a
group, a movie of a group, or a recording of a group.

“location”: Te object contains a location, meaning a picture or
movie of a location.

“other”: The object mainly doesn‟t contain people. For example the
picture of a house, or the sound of a dog. This will usually be the
correct type for source objects.

externalfile token: The name of the external file. No directory information may
be included. All files should be exported to (or imported from) the
same directory.

3

originalfile token: The name of the original file. 3

bin base64Binary: The object data base64-encoded. 3

title normstringlang: Short description of the object. In case of pictures,
this is the text that would normally be placed below the picture
when printed.

3

author normalizedString: Name of the photographer (personal name or
institution) for pictures and movies. The author if the object is a
document.

4

owner normalizedString: Name of owner of original (personal name or
institution). Useful for pictures only.

4

note string: Note. 3

[ext] any: Any simple or complex type of other namespaces N/A

4.2.4 Address

The address structure represents an postal address of something, someone or where something
happened. It is formatted as it would be for example on a mailing label.

The tag <lf/> is used to separate lines. Note that addresses often are limited to four lines (excluding
the addressee). Of these, the third line is usually used for the city-name and postal code, while the
fourth line is used for the name of the country. If, four example, the second line is not used, it
should still be included (by an extra <lf/>, se the examples). There may or may not be an <lf/> after
the last line. Importing applications should be aware though, that in some countries the address is
written “upside-down”. In such cases the country will be put in the first line, the city in the second
etc.

An importing application that is not level 4 compliant, will usually ignore the tp-attribute.

30

Definition:
<address>
 attributes: (lang?)
 content: ((ap | lf)*, phone?, fax?, ext*)
</address>

Attributes of address:

Element Type/description Level
lang lang: The language in which the address is written. 4

Content of address:

Element Type/description Level
ap normalizedString: Address part. Includes the optional attribute tp

(see definition below).
1/4

lf no data: Line feed. Indicates that the following ap-fields belong to
the next address line.

1

phone normalizedString: Phone number at this address. 2

fax normalizedString: Fax number at this address. 3

[ext] any: Any simple or complex type of other namespaces N/A

Possible values of the tp attribute of the ap field:

Element Type/description Level
tp “name”: The address part refers to the name of the house. This is

only used if the house have a name and it is used as a part of the
postal address.

4

“street”: The address part refers to a street name. 4

“number”: The address part refers to the number of the house. This
is usually not included without the name of the street.

4

“district”: The address part refers to the local district. This is
mainly used when there is no street name.

4

“pobox”: The address part refers to a postal office box. Both the
number of P. O. box and the description of it should be included.
(For example “P. O. Box 57”.)

4

“pcode”: The postal code or ZIP code. 4

“city”: The address part refers to a town or city, or it may be the
name of the nearest post office.

4

“country”: The address part refers to a country. 4

“state”: The address part refers to a state name. This is used only in
USA, Canada and Australia.

4

“other”: The address part is of some other kind than those above. 4

“unknown” (default): The address part is of an unknown type, or
the exporting program does not support the above address part
descriptions.

1

Examples of level 1 addresses:

<address>

 <ap>Øvre Strandgate 75</ap><lf/><lf/>

 <ap>4300 Stavanger</ap><lf/>

 <ap>Norway</ap>

</address>

<address>

 <ap>50 East North Temple Street</ap><lf/><lf/>

 <ap>Salt Lake City, UT 84150</ap><lf/>

 <ap>USA</ap>

</address>

Examples of level 4 addresses:

31

<address>

 <ap tp="name">Madsegården</ap><lf/>

 <ap tp="district">Brueland</ap><lf/>

 <ap tp="pcode">4300</ap>

 <ap tp="city">Sandnes</ap><lf/>

 <ap tp="country">Norway</ap>

</address>

4.2.5 Personalname

The personalname structure records the name of a person. The structure is used for two purposes:
1. In the person structure for storing the name used to identify the person in the database.
2. In the alias structure for storing the name found in a source. In many cultures in may be useful

to normalize the name, while storing the name exactly as found in the source in the referred
excerpt structure.

The name is split into name parts. Note that a name part may consist of more than one name. For
example

<np tp=”givn”>Johan</np><np tp=”givn”>Henrik</np>

is equivalent with
<np tp=”givn”>Johan Henrik</np>

Name parts like articles and prepositions may be included with the name part it belongs to, or it
may be regarded as a separate name part using tp=”art”. This should somehow be decided by the
user who registers the name. One simple rule to decide this is how the user wants the name sorted.
If you want the name “Godske von Ahlefeld” sorted by surname as “von Ahlefeld, Godske” then it
should be recorded as

<np tp=”givn”>Godske</np>

<np tp=”surn”>von Ahlefeld</np>

If you want it sorted by surname as “Ahlefeld, Godske von” it should be recorded as
<np tp=”givn”>Godske</np>

<np tp=”art”>von</np>

<np tp=”surn”>Ahlefeld</np>

Definition:

<personalname>
 attribute: (lang?)
 content: (np+, maid?)
</personalname>

Attribute of personalname:

Element Type/description Level
lang lang: The language in which the name is written. 4

Content of personalname:

Element Type/description Level
np normalizedString: Name part. Requires the attribute tp (see below). 1

Possible values of the tp attribute of the np field:

Element Type/description Level
tp “cogn”: A cognomen or agnomen (nickname) given in addition to

the other name(s) (like “the great” or “Germanicus”).
4

32

“surn”: Surname. The surname, family name, clan name or similar
inherited name of the person. Each person has normally only one
surname. If the name is a surname, but not the surname of the
person, the correct description is “midl” and not “surn”. Also note
that because a son has the same name as his father does not
necessarily mean that the name is automatically inherited and may
therefore not be a true surname but a cognomen, occupation name,
locality name or similar.

1

“pref”: Title or prefix that is normally included as a part of the
name, like “Sir”.

4

“givn”: Given name. The given name of the person. The person
may have several of these.

4

“reln”: Religious name. This is a name the person is given, or has
taken, as a religious name and not as a normal given name.

4

“nick”: A nickname substituting the given name (like “Bill” instead
of “William”).

4

“patr”: Patronymic name. A name created from the person‟s
father‟s name.

4

“matr”: Matronymic name. A name created from the person‟s
mother‟s name.

4

“tekn”: Teknonymic name. A name created from one of the
person‟s children‟s name.

4

“art”: Article. (“de”, “von”, “of” or similar) 4

“occn”: Occupation name. 4

“ordi”: Ordinal. Like “III” in “Charles III of France” 4

“locn”: Locality name (toponym). 4

“midl”: Middle name. Any kind of family name that is not the
surname of this person, like the maiden name of a married woman.
A middle name is a family name that may be the inheritable
surname for other persons or families, but not for this person. This
is not middle name in the American sense of the term. The
Americans don‟t have middle names in the GenXML sense. If a
person has two given names they should be coded as two “givn”
and not as one “givn” and one “midl”.

4

“sufx”: Suffix. (“sr.”, “jr.” or similar.) 4

“oth”: A name part of some other type than the ones above. 4

“unkw”: A name part which type is unknown. 1

maid Maiden name, not to be confused by middle name or any other
name parts above. The maiden name stored here is not really a part
of the name but additional information. See examples below

4

Examples of level 1 names:

<personalname>

 <np tp="unkw">Fred</np>

 <np tp="surn">Lunde</np>

</personalname>

<personalname>

 <np tp="unkw">Gaius</np>

 <np tp="surn">Julius</np>

 <np tp="unkw">Caesar</np>

</personalname>

Examples of level 4 names:

<personalname>

 <np tp="givn">Billy</np>

 <np tp="cogn">the Kid</np>

</personalname>

<personalname>

 <np tp="givn">Godske</np>

 <np tp="art">von</np>

33

 <np tp="surn">Ahlefeld</np>

 <np tp="art">til</np>

 <np tp="locn">Bosse</np>

 <np tp="art">og</np>

 <np tp="locn">Lindau</np>

</personalname>

<personalname>

 <np tp="givn">Gaius</np>

 <np tp="surn">Julius</np>

 <np tp="cogn">Caesar</np>

</personalname>

<personalname>

 <np tp="nick">Bill</np>

 <np tp="surn">Clinton</np>

</personalname>

Note that although many of the Roman cognomens were inherited, they were not true surnames.
They were not necessarily inherited by all family members. We may often see that the oldest son
inherits the cognomen of his father, while the younger sons get a different cognomen.

In some cultures (for example Germany) it‟s common to write a married woman‟s name like
“Hedvig Alvarstein, born Waaler”. This indicates that Waaler is no longer a part of the name
although it used to be. This should be encoded as:

<personalname>

 <np tp="givn">Hedvig</np>

 <np tp="surn">Alvarstein</np>

 <maid>Waaler</maid>

</personalname>

Please note that this is distinctly different from the case where a woman keeps her maiden name as
a middle name, like “Hedvig Waaler Alvarstein” which should be encoded as:

<personalname>

 <np tp="givn">Hedvig</np>

 <np tp=”midl”>Waaler</np>

 <np tp="surn">Alvarstein</np>

</personalname>

4.2.6 Coords

This structure holds the geographical coordinates of a place name.

Definition:

<coords>
 content: (lo, la)
</coords>

Content of coords:

Element Type/description Level
lo dDD, dDDMM or dDDMMSS: Longitude of the place, in degrees

(DD), minutes (MM) and seconds (SS). The prefix (d) must be
either “W” or “E”.

4

la dDD, dDDMM or dDDMMSS: Latitude of the place, in degrees
(DD), minutes (MM) and seconds (SS). The prefix (d) must be
either “N” or “S”.

4

34

4.2.7 Date

The date structure represents a specific date (known or unknown) when something happened, or it
may represent a period of time.

Note that the original date phrase belongs in the excerpt structure. The date structure holds the dates
that are to be presented in reports.

Definition:

<date>
 content: ((exact | (begin, end) | (from, to?) | to | text), sortdate)
</date>

Content of date:

Element Type/description Level
exact simpledate structure (see 4.2.8): An exact date, known or unknown. 1

begin simpledate structure (see 4.2.8): „begin‟ and „end‟ represents an
unknown date in a known date range. This kind of dating will
normally be written as “between <begin> and <end>” in ordinary
text.

3

end simpledate structure (see 4.2.8): End date of a date range. See
„begin‟.

3

from simpledate structure (see 4.2.8): An open period starting at the
specified point of time.

2

to simpledate structure (see 4.2.8): An open period ending at the
specified point of time.

2

text normalizedString: Any date written as free-form text. Other fields
should be used if possible.

2

sortdate datetime: A normalized date used mainly for sorting and
calculation purposes. This tag can only hold a single, exact date.

4

Examples:

<date>

 <exact>2001-12-06</exact>

</date>

<date>

 <begin>1904-05-00</begin>

 <end>1904-06-00</end>

</date>

<date>

 <from>1874-12-04</from>

 <to>1876-02-00</to>

</date>

4.2.8 Simpledate

Simpledate represents a single date. The format of the date itself is based on the XML Schema
Specification‟s dateTime datatype. Please note that the time zone part of dateTime is not a part of
simpledate. The reason for this is that in an GenXML event, the time zone is defined by the recorded
place. If the place is unknown, so is the time zone.

Definition:

<[simpledate]>

35

 attributes: (cal?, mod?, era?)
 data: date
</[simpledate]>

Note that the name of the structure may vary.

Attributes of simpledate:

Element Type/description Level
cal “chinese”: It is a date in the Chinese calendar. 4

“coptic”: It is a date in the Coptic or Ethiopian calendar. 4

“french”: It is a date in the French revolutionary calendar. 4

“gregorian”: It is a date in the Gregorian calendar. 1

“hebrew”: It is a date in the Jewish calendar. 4

“indian”: It is a date in the Indian calendar. 4

“islamic”: It is a date in the Islamic calendar. 4

“julian”: It is a date in the Julian calendar. 3

“unknown” (default): Unknown calendar. 3

mod “about”: The exact date is close to the given date. 2

“after”: The exact date is after the given date. 2

“before”: The exact date is before the given date. 2

“estimated”: The exact date is estimated as specified. 2

era “after” (default) or “before”: Indicates if the date is after or before
the start of this era. Note that “before” is only defined for the Julian
calendar and the proleptic Gregorian calendars (equals “before
Christ”).

3

Data of simpledate:

Element Type/description Level
date This format of this field is a modified extension of the XML Schema

Specification‟s dateTime datatype which in turn is based on ISO
8601. The general format is: YYYY[/ZZ][-MM[-DD[Ttt:mm[:ss]]]]

The date is represented by the year (0000 or greater) and the
alternate year (00 or greater), the month (0 – 12 or 13 depending on
the calendar used), and the day (0 – 31). Zero indicates that that
part of the date is unknown. The number of digits is fixed. The
alternate year (ZZ) is optional and is only used to show the
possible date alternatives for dates using the Julian calendar. For
example 1532/33-02-16 indicates that the date was in the year 1532
because New Year‟s Day was 25. March, but would have been in
the year 1533 if New Year‟s Day was 1. January. tt:mm:ss
represents the time (times, minutes and seconds), ranging from
00:00:00 to 24:00:00. Note that 2002-04-12T00:00:00 equals 2002-04-
11T24:00:00. Since the time 00:00:00 does have a meaning, the time
should be omitted if it is unknown.

The number of digits for each part is always fixed, i. e. 3 July 1957
should be represented as 1957-07-03 and not 1957-7-3.

1/3/4

Examples: See the date structure.

4.3 Substructures of the Header Structure

4.3.1 Owner

The owner substructure contains information on the owner of the exported database.

36

Definition:

<owner>
 content: (name, address?, phone?, email?, uri?)
</owner>

Content of owner:

Element Type Level
name normalizedString: The name of the owner. N/A

address address structure (see section 4.2.4): The address of the owner. N/A

phone normalizedString: Phone number of the owner. N/A

email normalizedString: Email address of the owner. N/A

uri anyURI: Homepage of the owner. N/A

4.4 Substructures of the Person Structure

4.4.1 Subpersons

The subpersons structure is used for combining two (and only two) persons that probably (but not
necessarily) were the same individual. For more information, see the person structure.

Definition:

<subpersons>
 attributes: (probability?)
 content: (personref, personref, note?)
</subpersons>

Attributes of subperson:

Element Type/description Level
probability int: The probability (in %) of the referred persons being one and

the same.
4

Content of subperson:

Element Type/description Level
personref ident: Pointer to a person. 4

note stringlang (see section 4.2.1): A note. This is the description of the
assumption made.

4

Example:

<subperson probability="50">

 <personref>1743</personref>

 <personref>1746</personref>

</subperson>

4.5 Substructures of the Assertion Structure

4.5.1 Alias

The alias structure stores a name of a person as found in a source. The user may want to normalize
it, though, and refer to an excerpt (from the encapsulating assertion structure) with the exact spelling.

Definition:

37

<alias>
 attribute: (negative?)
 content: (personalname, personref, date?)
</alias>

Attributes of alias:

Element Type/description Level
negative boolean (Default is “false”): Indicates “negative” information. If

set to “true”, this name was not used by the referred person.
4

Content of alias:

Element Type/description Level
personalname personalname structure (see section 4.2.5): The name of the person

as recorded in the referred source.
3

personref personref structure (see section 4.5.6): Pointer to the owner of this
name.

3

date date structure (see section 4.2.7): The date or period when this
name was used.

3

Example:

<alias>

 <personalname>

 <np tp="unkw">John</np>

 <np tp="surn">Smith</np>

 </personalname>

 <personref seq="2">476</personref>

 <date><exact>1778-05-14</exact></date>

</alias>

4.5.2 Relationship

The relationship structure represents a parent-child relationship. The father-child and mother-child
relationships may (and should if both relationships come from the same source) be combined into a
single relationship structure.

Note that GenXML does not guarantee the match between selected father/mother tag and their
recorded sex, as this depends on the user who entered the data and the application which accepted
the data.

Definition:

<relationship>
 attribute: (negative?)
 content: (relation, (father | mother | parent), child)
</relationship>

Attributes of relationship:

Element Type/description Level
negative boolean (Default is “false”): Indicates “negative” information. 4

Content of relationship:

Element Type/description Level
relation “biological”: The relationship is biological. 1

“adoptive”: The relationship is through adoption. 3

“foster”: The relationship is through foster-parents. 3

“other”: The relation or association is of some other kind. 3

38

father personref structure (see section 4.5.6): ID-number of the father in
this relationship.

1

mother personref structure (see section 4.5.6): ID-number of the mother in
this relationship.

1

parent personref structure (see section 4.5.6): ID-number of the parent
(with unknown sex) in this relationship.

3

child personref structure (see section 4.5.6): ID-number of the child in
this relationship.

1

4.5.3 Attribute

The attribute structure represents an attribute or characteristic of a person. As opposed to events,
attributes typically take place over a period of time. However, the most important difference
between events and attributes is that attributes have a text of some sort. For example the attribute
“hair colour” will need to store the actual hair colour, and the attribute “education” will need to
store the kind of education and school.

The exact type of attribute is dependant on both class and description, and attributes of the same
class with identical descriptions are of the same type.

Attribute corresponds to the Characteristic entity of the Gentech Genealogical Data Model (GDM).

When compared to GEDCOM 5.5‟s individual attribute structure, the class (textclass, numberclass
or flagclass) corresponds to the attribute tag (for example EDUC, NCHI or OCCU), while description
corresponds to the TYPE tag of the Event_Detail structure.

Definition:

<attribute>
 attribute: (negative?)
 content: (description?, ((textclass, text) | (numberclass, number, modifier?) | flagclass),
 personref, date?, place?,address?)
</attribute>

Attributes of attribute:

Element Type/description Level
negative boolean (Default is “false”): Indicates “negative” information. 4

Content of attribute:

Element Type/description Level
description normstringlang (see section 4.2.2): Short description of the kind of

attribute.
3

textclass “caste”: The caste to which this person belonged. 3

“education”: Education. Note that the graduation is an event. 3

“email”: Email address. 3

“idnumber”: Any kind of national ID number, like social security
number.

3

“language”: The language spoken by the person (for example
native language).

3

“nationality”: The nationality of the person. 3

“physical”: Any kind of physical description of the person, for
example eye or hair colour, race, height and weight. (Height and
weight must be treated as text as they should include unit.)

3

“property”: Property owned by the person. 3

“religion”: The religion with which the person was affiliated. 3

39

“title”: A title, like a nobility title or similar. 3

“work”: Occupation. 1

“other”: Any other kind of text-based attribute. 3

text normstringlang (see section 4.2.2): The details of the attribute. 1

numberclass “age”: The age of a person. 4

“children”: The total number of children, not the calculated sum of
registered children.

4

“marriages”: The total number of marriages, not the calculated
sum of registered marriages.

4

“other”: Any other kind of number-based attribute. 4

number int: The details of this attribute. 4

modifier “exact” (default): The number specified is exact. 4

“greater”: The number is greater than specified. 4

“less”: The number is less than specified. 4

flagclass “ancestor”: This person is an ancestor of some unspecified person. 4

“descendant”: This person is a descendant of some unspecified
person.

4

“living”: This person is still living, or was living at the specified
date.

4

“other”: Any other kind of flag-based attribute. 4

personref personref structure (see section 4.5.6): ID-number of the person to
which this attribute apply.

1

date date structure (see section 4.2.7): The date or period during which
the attribute existed or was valid.

3

place ref: Points to a place structure (see section 4.1.8) representing the
place where the attribute existed (if any).

3

address address structure (see section 4.2.4): The postal address of the place
where the attribute was (if any).

3

Examples:

<!--Person with id=P57 was a fisherman-->

<attribute>

 <description>occupation</description>

 <textclass>work</textclass>

 <text>fisherman</text>

 <personref>P57</personref>

</attribute>

<!--Person with id=P193 had at least 7 children-->

<attribute>

 <numberclass>children</numberclass>

 <number>6</number>

 <modifier>greater</modifier>

 <personref>P193</personref>

</attribute>

<!--Person with id=P20 was not living 4. December 1964-->

<attribute negative="true">

 <flagclass>living</flagclass>

 <personref>P20</personref>

 <date><exact>1964-12-04</exact></date>

</attribute>

4.5.4 Event

The event structure represents an event in the life of one or more persons. An event is something
that happened at a certain moment – a certain day. There are however a few exceptions, like
residence. (“Residence” is logically an attribute, but technically an event as it has no special data
except the place, which all events and attributes may have.)

40

The event may include many participants that have different roles in the event. However one must
distinguish between principal participants in the event and participants that have a subordinate
role. In a christening event, the person that is born is the principal participant. The godfather,
godmother, priest, and all other participants have a subordinate role. In a wedding there are two
principal participants: the bride and the groom. In some events, for example the invasion of
Normandy 5. June 1944, there are a very large number of principal participants. (In such “group”-
events, talking of subordinate participants has little meaning.)

All events have at least one principal participant. However in some cases the principal participant
may be unknown. Therefore the principal field is not mandatory.

Note that although the parents of a child do have a subordinate role in the birth event of the child,
the parent-child relationship should not be recorded using this mechanism. Instead use the
relationship structure (see section 4.5.2).

Definition:

<event>
 attribute: (type, negative?)
 content: (principal*, subordinate*, date?, place?, address?)
</event>

Attributes of event:

Element Type/description Level
type ident: ID-number of the event type (see section 4.1.6) of which this

event is an instance.
1/3

negative boolean (Default is “false”): Indicates “negative” information. 4

Content of event:

Element Type/description Level
principal personref structure (see section 4.5.7): Pointer to the principal

person of this event
1

subordinate personrefrole structure (see section 4.5.7): Pointer to a person that
has a subordinate role in this event.

4

date date structure (see section 4.2.7): The date when the event
happened.

1

place ref: Pointer to a place structure (see section 4.1.8) representing the
place where the event happened.

1

address address structure (see section 4.2.4): The address of the place where
the event happened.

3

Examples:

<event type="5" pref="true">

 <principal>53</principal>

 <subordinate >71</subordinate>

 <subordinate>72</subordinate>

 <date><exact>1978-10-29</exact></date>

 <place><pnp tp="city">Oslo</pnp><pnp tp="country">Norway</pnp></place>

</event>

4.5.5 Info

The info structure represents general information that does not fit well into other assertion
structures.

41

Definition:
<info>
 content: (text, personref+)
</info>

Content of info:

Element Type/description Level
text stringlang structure (see section 4.2.1): This is the actual

information.
1

personref personref: Pointer to the person of which this information apply. ¼

4.5.6 Personref

The personref structure represents a link between an assertion and a person. A sequential number
may be supplied. This states the sequence of assertions for a person. The number should be unique
for each person, but it is not required. The sequence of assertions with equal sequential numbers for
the same person, must be regarded as not specified.

Definition:

<[personref]>
 attribute: (pref?, seq?)
 data: personid
</[personref]>

Note that the name of the structure may vary.

Attribute of personref:

Element Type/description Level
pref boolean: (Default is “true”.) States if the encapsulating assertion is

the preferred assertion of all assertions of the same type. If this
attribute is not set for any assertions of a given type, the first one of
that type may be regarded as the preferred one. If more than one
assertions of the same type have this attribute set to “true”, the first
of these may be regarded as the preferred one.

3

seq int: Sequential number specifying the sequence of assertions for the
referred person.

4

Data of personref:

Element Type/description Level
personid ident: Pointer to the person that has a role in the related event. 1

Example:

<personref seq="4">P85</personref>

4.5.7 PersonrefRole

The personrefrole structure is a pointer to a person that has a subordinate role in the event of which
personrefrole is a subject.

Definition:

<[personrefrole]>
 contents: (personref, role)
</[personrefrole]>

42

Note that the name of the structure may vary.

Content of personrefrole:

Element Type/description Level
personref personref structure (see section 4.5.6): Pointer to the person that

has a role in the related event.
3

role normstringlang structure (see section 4.2.2): The role of this person
in the related event.

3

Example:

<subordinate>

 <personref seq="7">P316</personref>

 <role>witness</role>

</subordinate>

4.6 Substructures of the source structure

4.6.1 Repositoryref

Definition:
<repositoryref>
 attributes: (ref)
 contents: (callnumber?, note?)
</repositoryref>

Attributes of repository:

Element Type/description Level
ref ident: Pointer to a repository. 3

Contents of repository:

Element Type/description Level
callnumber normalizedString: The callnumber of the source in the refered

repository.
3

note stringlang (see section 4.2.1): Notes concerning the specific copy of
the source in the referred repository.

3

43

5 GenXML levels
The features of GenXML are divided into levels to make it easier both for the application developers
and the users to understand what the capability of a genealogy program is.

The general description of each level is as follows:

1 The basic information of a simple genealogy program
2 Approximately the same information as the most commonly used parts

of Gedcom 5.5
3 All information that an advanced genealogy application should support
4 In addition to level 3 data, all data of minor importance must also be

supported

Definitions:

GenXML level X includes all so called level X structures in addition to all level X-1 structures.

A GenXML file is said to be a GenXML level X file if the file does not include any structures
of higher levels.

A program said to be GenXML level X compliant, should be able to read and write all
GenXML level X files as well as files of lower levels. When importing a GenXML level X file
and then exporting the same data, all data should be exported in the same structures as in the
imported file.

Data loss should never occur, except when importing a level X+1 (or greater) file into a level X
compliant program.

See chapter 4 for details on what level each kind of data belongs to. A summary is given below.
Note that some fields are marked as Not Applicable (N/A). These fields hold non-genealogical
information of minor importance. Each application, regardless of GenXML level compliance, may
choose to ignore this information.

5.1 Level 1

Level 1 is the most basic level. The following structures must at least be understood by a program in
order to be called “level 1 compliant”. A program that is not level 1 compliant is not GenXML
compliant at all.

 The file structure with all fields.

 The header structure with all fields and substructures. Note that not all fields are
mandatory.

 The basic eventtype structure. Note that only eventtypes of class “birth”, “death” and
“marriage” may be supported. Event types of the same class may be regarded as the same
event type. The roles field may only take values “1” (for classes birth and death) or “2” (for
class marriage).

 The person structure.

 The assertion structure. Only the following substructures:

44

o The basic relationship structure. Only biological relationships, and only one
relationship for each child (i. e. no alternative parentage).

o The attribute structure. Only one attribute structure of each class per person, and
only textclass=“work”.

o The basic event structure. Only one event of each event type per person. Note the
limitations in the eventtype structure.

o The info structure. Only one per person, and only one person per info structure.

 The total structure. Note that all fields are mandatory.

 All dates may consist of only a single, exact date of the gregorian calendar without the time
or alternate year specified.

5.2 Level 2

A program must, in order to be called “level 2 compliant”, be able to read and write the following
data, in addition to level 1 data:

 The basic source structure.

 The basic excerpt structure.

 Additions to the header structure:
o The language attribute.

 Additions to the eventtype structure:
o The classes “baptism”, “burial” and “divorce”.

 Additions to the person structure:
o The excerptref field.

 Additions to the assertion structure:
o The excerptref field.

 Additions to the address structure:
o The phone field.

 Additions to the date structures:
o The modifiers “before”, “after”, “about” and “estimated”.
o Dates may be described by a string.
o The date structure may include a period instead of an exact date.

5.3 Level 3

A program must, in order to be called “level 3 compliant”, be able to read and write the following
data, in addition to level 2 data:

 The repository structure.

 Additions to the excerpt structure:
o The text, quality and note fields.

 Additions to the eventtype structure:
o All classes must be supported.
o The description field. I. e. at level 3 and 4, the description field is used to distinguish

between event types of the same class. At level 1 and 2, the description field (which is
mandatory) is merely a comment, and there is no more than one event type of each
class. (The class is in fact taking the place of the event type for these levels.)

o The gedomtag field.
o The roles field may take other values than 1 and 2.

 Additions to the person structure:
o Sex may take the value “unknown”.
o The note field.

 Additions to the assertion structure:
o The alias substructure.

45

o Additions to the relationship structure:
 There may be unlimited relationship assertions per person.
 Relationships of other types than “biological”.
 Relationships with one parent of unknown sex.

o Additions to the attribute structure:
 There may be unlimited attribute assertions per person.
 The description field.
 Attributes of all textclasses.
 The date and place substructures.

o Additions to the event structure:
 There may be an unlimited number of events of each event type for each

person.
o Additions to the info structure:

 Unlimited number of info structures per person.
o Additions to the personref structure:

 The pref attribute.
o The note field.

 The task structure.

 The lang attribute of the repository, source, excerpt and person structures.

 The object substructure.

 Additions to the address structure:
o The fax field.

 Additions to the date:
o Calendar may be “julian” or “unknown” (as well as “gregorian”).
o Both “after” and “before” are possible values of the era-attribute.
o May include alternate year.

5.4 Level 4

A program must, in order to be called “level 4 compliant”, be able to read and write the following
data, in addition to level 3 data:

 Additions to the source structure:
o The class, kind and media attributes.
o The isbn and issn fields.
o Source hierarchy.

 Additions to the eventtype structure:
o The note field.

 Additions to the person structure:
o The subpersons structure.

 Additions to the assertion structure:
o The datatype attribute.
o The assertionref field.
o The negative attribute of the alias, relationship, attribute and event structures.
o Additions to the attribute structure:

 Numerical attributes. (The numberclass, number and modifier fields.)
 Flag attributes. (The flagclass field.)

o Additions to the event structure:
 The subordinate structure.

o Additions to the info structure:
 There may be more than one personref structures, i. e. several persons may

share a common info structure.

46

o The seq attribute of the personref structure.

 The objective structure.

 Additions to the task structure:
o The objectiveref field.

 More advanced address structure.

 More advanced place structure. It may also include a coords structure.

 More advanced name structure.

 The lang attribute of the stringlang, normstringlang, address and object structures.

 Additions to the date structures:
o All calendars.
o Inclusion of the time in datetime strings.

47

6 How To …

6.1 … Use Source Hierarchies

A source may be split into a hierarchy of sources. The top-level source represents the whole source.
The user and/or the application decide the exact split of sources into hierarchies, but some
examples will be given here. Source hierarchies are necessary when it is unclear what to call a
specific source or when the user wants to record details of specific parts of a source. For example do
you record each volume in a series as a source, or all of the series as a single source? What if the
series consist of several related series? And what if each volume in the series is published in
separate parts over a period of time? Source hierarchies solve all these problems.

Note that the complete source hierarchy of a specific source may be very large. Usually only small
parts of the tree are actually registered – the parts that are needed.

Only the top-level source may be linked to a repository, as all other source records are part of the
top-level source and therefore is stored in the same place as the top-level source.

If for example a book has been published in two different editions and you want to register both
editions, they should not be parts of the same source hierarchies, but should be regarded as two
different sources.

6.1.1 Example 1: Church Records

A church register may be registered as a top-level source of class “book”. The church register may
consist of several parts. For example, there may be part for marriages. This may be registered as a
second-level source of class “part”. The sourceref tag of this source will point to the top-level
source. This part will contain several entries, each describing a marriage. One, some, or all, of these
may be registered, as third-level sources of class “document”.

6.1.2 Example 2: Encyclopedia Britannica

The complete Encyclopedia Britannica may be registered as a top-level source of class “series”. A
specific volume may be registered as a second-level source of class “book”, referring to the top-level
source. A specific article in that volume may be registered as a third-level source of class
“document”.

6.1.3 Example 3: A Periodical

You want to store a reference to an article in The American Genealogist, volume 77 number 1
(January 2002). The complete journal may be registered as a top-level source of class “series”. The
volume may be registered as a second-level source of class “book”. The specific issue may be
registered as a third-level source of class “issue”, and the article may then be registered as a fourth-
level source of class “article”.

6.2 … Use Multiple Person Records for the Same Individual

The person structure is a collection of assertions related to a specific individual. In some cases you
may be unsure if two pieces of information deal with the same individual or with two different
individuals. In such cases you may create two person structures, and create a third, super, person
structure connecting the two previous ones.

48

If you later can prove that the two individuals really are the same, you may choose to merge the
records, or to keep all the person structures to show your reasoning.

6.3 … Build Up Your Reasoning Using Assertions

Assertions are normally based directly on source fragments. For example, an excerpt “Elspeth
Sinclair, relict of William Halcro”, dated 31. July 1619, may give two assertions: 1. a marriage event
between Elisabeth Sinclair and William Halcro, and 2. a death event of William Halcro, dated before
31. July 1619.

In some cases it might be useful to base an assertion on other assertions instead of directly on source
fragments. The new assertion does not have to be of the same type as the assertions on which it is
based.

For example, in a document Ninian Neven is said to be the son of John Neven. Based on this you
may create a relationship assertion. In the same document John Neven is said to be the husband of
Katherine Mowat. Based on this you may create a marriage event. In another document Ninian
Neven is said to be the nephew of Gilbert Mowat, son of Andrew Mowat. Based on this you may
simply create an info assertion telling that Ninian was the nephew of Gilbert Mowat. Combining
this information you will probably guess that Katherine Mowat was the sister of Gilbert and mother
of Ninian, although you have no proof. You may create two new relationship assertions based
directly on the source fragments. However a better solution would be to base both of the new
assertions on the first two assertions, showing your chain of thought.

6.4 … Store Adoptions

Adoptions consist of two parts: the adoption event and the relationship between the adoptive
parents and the adopted child. A complete adoption will thus consist of three assertions: one for the
event, one for the adoptive father – adopted child relationship, and one for the adoptive mother –
adopted child relationship. The last two may be combined into one.

6.5 … Make the Most of the Research Model

GenXML supports one research project per file, but may have several research objectives. Each
research objective should be split up into research tasks, where one task is related to one and only
one person and one and only one source.

A research objective, such as “Who is the father of John Smith?” may require look-ups in several
sources for several persons, and thus in several repositories (libraries). All of these combinations is
recorded and specified in research tasks. Each source may be linked to all the repositories (usually a
subset) in which it exists. The researcher may thus get a list of all tasks that need to be done in a
specific repository (library), independent of which research objectives they are part of.

A research objective is not completed until all of its tasks are completed or rejected.

The user may decide to keep or delete research objectives and their tasks when they are completed.

